Using Grouped Features to Improve Explainable AI Results for Atmospheric AI Models
that use Gridded Spatial Data and Complex Machine Learning Techniques
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Scientific insights:
_If the model performs well,
has it learned something interesting?
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Challenge: Challenge:
XAl techniques struggle

with correlated features

Gridded spatial data typically
has substantial correlation

Autocorrelation

Consider evaluating individual pixels:

Expect minimal change in output
—» SO the model uses nothing?

k| Consider evaluating a superpixel:

Captures acloud feature that
might trigger a change in probability

Teleconnections

[4] Western-Central Indian Ocean precipitation anomalies
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The map shows how global
precipitation anomalies are
correlated with this region )
of the earth. Teleconnections 5qgd™t
are long-range relationships |
among spatial phenomena.
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Long-range dependencies:

There are correlations between grid cells
that could be captured by calculating
pairwise dependency using a large dataset
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XAl from 3 learned functions
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This material is based upon work supported by the National Science Foundation

XAl methods at three levels of granularity

Step 1: Generate M covariance matrices

Step 2: For each covariance matrix GC;, Step 3: Use P to define a known function F
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Step 4: For each Ci, pretend F is unknown

Step 5: Use XAI methods to explain each
and train T NNs with inputs X, outputs y,
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Observation 2:

These disagreements seem to reflect the nature of the data.

G3 contains a 3D atmospheric profile, so small-scale perturbations do
not break the large-scale patterns learned using dilated 3D convolution.

Proposal: Hierarchical Clustering

Goal 1: Group features in a data-driven fashion, not arbitrary geometry.
Goal 2: Explain a hierarchy to learn about features across scales.

Goal 3: Strategically select groups since infeasible to explain everything.

Sketch: nested clusters to
capture important features
at multiple scales
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Technique: agglomerative
hierarchical clustering
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Strength of correlation among grid cells

With high correlation, many equivalent models:
accurate model but inconsistent XAl

1.0

Initially, no patterns to learn from:
poor model & inconsistent XAl

Next Benchmarks

There are many XAl methods
explanations: no ground truth

Mamalakis et al.: -
[7] XAl benchmarks with known attribution. -
The function is designed such that the true explanation is known.

but hard to quantitatively assess
explanation to compare against

Teleconnections

Global, Low-Res SST

Averages out local values

Autocorrelation

Local, High-Res SST

, Zoom in on a smaller region
Pearsons r:

measure correlation

Ground truth ,
between explanations

Discontinuity between cells Huge autocorrelation influence

Long-range dependencies

ldea:
Clustering based on

correlation matrix

Long-range is less important

|dea:
Clustering based on similar

values in a single sample
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