
Step �: Generate M covariance matrices
to induce correlation in synthetic samples
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Step �: For each covariance matrix Ci,
generate N samples of X ∈ ℝd from an MVN
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Step �: Use P to define a known function F 
that maps each vector Xn into a scalar 𝑦n 
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Step �: For each Ci, pretend F is unknown
and train T NNs with inputs Xn, outputs 𝑦n 

Step �: Use XAI methods to explain each 
NN and compare explanation consistency 

from F1,1X1,1
Attribution

from F
XAI results for T trained NNs 

from F1,2 from F1,T

from F2,1X2,1
Attribution

from F
XAI results for T trained NNs 

from F2,2 from F2,T

from FM,1XM,1
Attribution

from F
XAI results for T trained NNs 

from FM,2 from FM,T
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Data Relationships
x1 x2 = x1 x3 x4

complete
correlation

Actual Function
y = 0.25*x1 + 0*x2 +  x3 + x4 

Some Valid 
Learned Functions

y1 = 0.25*x1 + 0*x2 +  x3 + x4 
y2 = 0*x1 + 0.125*x2 +  x3 + x4 

y3 = 0.125*x1 + 0.0625*x2 +  x3 + x4 

XAI from 3 learned functions
data sample
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Benchmark Development Pipeline

Challenge: Correlations in Spatial Data

Grouping Correlated Features for XAI

Motivation: Explain Geoscience Models

Benchmark Results

Case Study: Explaining FogNet 

Proposal: Hierarchical Clustering 

Autocorrelation

Teleconnections

Challenge: How to Evaluate XAI?

Consider evaluating individual pixels:

Consider evaluating a superpixel:
Captures a cloud feature that
might trigger a change in probability

Next Benchmarks
Teleconnections Autocorrelation

Zoom in on a smaller region

Huge autocorrelation influence

Long-range is less important

Idea:
Clustering based on similar 

values in a single sample

Local, High-Res SSTGlobal, Low-Res SST

Averages out local values

Discontinuity between cells

Long-range dependencies

Idea:
Clustering based on 

correlation matrix

There are correlations between grid cells 
that could be captured by calculating
pairwise dependency using a large dataset

Long-range dependencies:

Western-Central Indian Ocean  precipitation anomalies
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The map shows how global

precipitation anomalies are

correlated with this region

of the earth. Teleconnections

are long-range relationships

among spatial phenomena.
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Explainable AI FogNet Model
Model debugging:

Scientific insights:

Challenge:
XAI techniques struggle
with correlated features

Challenge:
Gridded spatial data typically

has substantial correlation 

input image explanation

The model has high
accuracy for task
wolf or husky?, but
actually looking at
snow pixels... many
wolf photos have a 
snowy background.

If the model performs well,
has it learned something interesting?

3D CNN for 
coastal fog prediction

G1 wind
G2 turbulence kinetic energy 
      & humidity
G3 lower atmosphere 
      thermodynamic profile
G4 surface atmosphere moisture 
      & microphysics
G5 sea surface temperature

XAI on groupsXAI on channels
G1 G2 G3 G4 G5G1 G2 G3 G4 G5

XAI on channel-wise
superpixels

G1 G2 G3 G4 G5

There are many XAI methods, but hard to quantitatively assess
explanations: no ground truth explanation to compare against

Mamalakis et al.:
XAI benchmarks with known aribution.
The function is designed such that the true explanation is known.

By training models that achieve near-perfect performance,
assume that dierences between XAI results and ground truth
is due to characteristics of the XAI algorithm. 

Ground truth

Gradient Smooth Gradient Input * Gradient Integrated Gradients

Pearson's r:
measure correlation 

between explanations

r = -0.08 r = -0.10 r = 0.82 r = 0.81

XAI method Permutation Feature Importance
was used to explain FogNet in terms of the
five physics-based groups, channels, and
8x8 superpixels within each channel.

XAI methods at three levels of granularity 

Observation 1:
Explanations are highly sensative to choice of grouping scheme.
Groups suggests that G3 provided ~20% of the predictive skill.
but Channel-wise superpixels suggests we could throw G3 out.

Observation 2:
These disagreements seem to reflect the nature of the data.
G3 contains a 3D atmospheric profile, so small-scale perturbations do 
not break the large-scale paerns learned using dilated 3D convolution.

Goal 1: Group features in a data-driven fashion, not arbitrary geometry.
Goal 2: Explain a hierarchy to learn about features across scales.
Goal 3: Strategically select groups since infeasible to explain everything.

References

Sketch: nested clusters to
capture important features

at multiple scales
Technique: agglomerative 

hierarchical clustering

Initially, no patterns to learn from:
poor model & inconsistent XAI

With high correlation, many equivalent models:
accurate model but inconsistent XAI 
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Expect minimal change in output
so the model uses nothing?
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