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Observation #4: K-Best Feature Selection Hurts Performance

Alignment  Criteria Modeling Experiments
• Strong fire’s rising thermal may produce a pyroCb
• Requires strong fires & particular atmospheric conditions
• May inject massive smoke/dust into lower stratosphere
• Navy: strategic implications of a large aerial smokescreen

• Using brand-new NRL-produced pyroCb inventory
• Model task: given a fire → classify as pyroCb / non-pyroCb (detection!)
• But predictors are atmospheric variables (NAVGEM or GFS models)
• Goal: learn atmospheric conditions favorable to pyroCb development

Prior Work
Peterson et al., 2017: 
26 N.A. pyroCb events → reanalyzed meteorological model outputs
                                                → conceptual model of pyroCb development
Tory et al., 2021: 
PyroCb Firepower Threshold (PFT): software tool that calculates
pyroCb potential based on atmospheric data. Developed based on
fire weather domain expertise, not machine learning.

Machine Learning

Training Data Variants

Machine Learning Architectures

1.    Fire features          
2.   No fire features   
3.   No fire features  

&   aligned pyroCbs 
&   aligned pyroCbs 
&   all pyroCbs

1. Random Forest
2. Weighted Random Forest
3. Support Vector Machine
4. Deep Neural Network

Observation #5: Data Balance Ine�ective
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Future Work

2013 2014 2015 2016 2017 2018 2019 2020
0.0

0.2

0.4

0.6

cr
iti

ca
l s

uc
ce

ss 
in

de
x

Observation #3: Model Performance

No fire features, all pyroCbs
No fire features, only aligned pyroCbs
Fire features, only aligned pyroCbs

Random Forest Results

Because of Pacific 
Northwest Event?
(Peterson et al., 2018)
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Observation #2: Controlling Fire Feature Influence
Before removing small fires from training data,
fire features dominate. This prevents learning
relationships between pyroCbs and atmosphere.

After removing small fires, the fire features
have little importance so that model can learn
to predict based on atmospheric conditions.
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All features included
No engineered features (e.g. ccl-lcl)
Only K-best selected features (higher than FCanal)

Random Forest Results
(no fire features, only aligned pyroCbs)

No data balancing
Random Under-Sampling
Random Over-Sampling
SMOTE
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These features 
lowered performance!
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1. Compare to PFT
2. Investigate 2017 pyroCbs
3. More atmospheric features
4. Model tuning
5. Probe learned relationships
    with eXplainable AI (XAI)
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Observation #1: Alignment Failures

obscured
by pyroCb

single fire pixel

obscured
by clouds

distance between
fire and pyroCb

Nasa Worldview images

Fires within ±12 hours of pyroCb

100 km 150 km

Non-pyroCb fires

Ambiguous cases

Alignment
Candidate

Random Forest Results
(fire features, only aligned)

Pyrocumulonimbus (pyroCb) Machine Learning Pipeline
Align pyroCbs to satellite fires

Add engineered features

For valid dataset,
drop either fire features
or unaligned pyroCbs

K-Best Feature Selection

Data balancing techniques

Train & evaluate models

Remove weaker fires


