SCOTT: The Influence of Feature Group Schemes
on Explainable Al for Geoscience Al Models e Kl

Synopsis: Gridded spatial data can be used to develop high performance
machine learning models, but their complexity makes it hard to verify that the
model learned realistic strategies. Explainable Al (XAl) techniques can be used
to investigate models, but they struggle with correlated features. A proposed
solution is to group correlated features for XAl. We use FogNet, a deep learning
model for coastal fog prediction, to explore XAl grouping schemes. We
demonstrate that using a hierarchy of feature groups can be used to gain
insights into the scale of the learned features.

Bio: Evan Krell is a Ph.D. student in the GSCS program and a member of
the Innovation in COmputing REsearch lab (iCORE) as well as the NSF Al
Institute for Research on Trustworthy Al in Weather, Climate, and Coastal
Oceanography (AI2ES). He is broadly interested in XAl, geoscience models,
data visualization, marine robotics, fishing, and boating. His current project
is to learn Chinese cooking and his three-cup chicken (=Z##38) is way better
than the dish at Dao. (@
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Model verification Scientific insights
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(a) Husky classified as wolf (b) Explanation

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "
Why should i trust you?" Explaining the predictions of .
any classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and

data mining (pp. 1135-1144). O

Presentation: Explainable Al (XAl) for Climate Science: Detection, Prediction
and Discovery. Elizabeth Barnes. 2022.
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Explainable Artificial Intelligence (XAl)
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Geoscience Al Models
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High-dimensional geospatial raster (gridded) data is used to train complex machine learning models.

Often complex models (e.g. Deep Neural Net) greatly outperform simpler alternatives (e.g. Random Forest).

These models are hard to interpret: what are the model’s decision-making strategies?



XAl Challenge: Correlated Features
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this superpixel? 6. Replacing larger region
--> break up learned feature
--> could change model decision




Spatial & Temporal Autocorrelation

Harmful algal bloom 3D vegetation structure derived
i from lidar point clouds

Height = 32

Width = 32

Petras et al., 2017
https://opengeospatialdata.springeropen.com/articles/10.1186/s40965-017-0021-8

Harmful algal bloom
time series

Binding et al., 2020
https://link.springer.com/chapter/10.1007/698_2020 589

3D spatial

3D temporal

FogNet: 4D data (spatio-temporal) packaged as 3D
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Combining Grid Cells into Feature Groups
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shap.explainers.Partition — SHAP documentation



https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html

Case Study: FogNet XAl Results

3D CNN with double-branch dense block & attention mechanism
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(c) Channel-wise

e Applied geometric rather than data-driven groupings for XAl

e Compared 3 grouping schemes:
o Physics-based channel groups
o  Channel-wise
o  Channel-wise SuperPixels (CwSP)
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Groups 1-3 dilute as we increase granularity
Groups 1-3 contain vertical profiles where
small-scale features have little predictive power
Suggests that FogNet learns 3D features
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XAl Verification Benchmarks

Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset

Step 1: Generate N samples of X € R% from a MVN

Step 3: Pretend function F is not known and
train a NN using inputs X,, and outputs y,

Step 4: Use XAl methods to explain the NN
and compare with the ground truth from F

Yn = F(xp)
Known F: R¢ - R

Step 2: Use a known function F that maps
each vector x,, into a scalar y,
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Antonios Mamalakis, Imme Ebert-Uphoff, Elizabeth A. Barnes
https://www.cambridge.org/core/journals/environmental-data-science/article/neural-network-attribution-methods-f
or-problems-in-geoscience-a-novel-synthetic-benchmark-dataset/DDA562F C7B9A2B30710582861920860E

| am currently building on the
XAl verification benchmarks
research by Mamalakis et al.

The goal is to build a suite of
benchmarks based on various
types & strengths of correlation.

We will then use benchmarks to
assess methods for data-driven
feature groups.

Can clustering strategies be
used to improve XAl results?
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