COSC-6590/GSCS-6390

Game Theory

Game Theoretic Potential Field for Autonomous Water Surface Vehicle Navigation Using Weather Forecasts

Evan Krell and Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences Texas A&M University - Corpus Christi, USA

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Table of contents

- 2 Game Theory Motion Planning
- 3 Algorithms & Problem Formulation
- 4 Experimental Results

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Resu

Problem Description

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Scenario: Autonomous Surface Vehicles' Navigation

Autonomous surface vehicles

- Complex coastal navigation
- Dynamic, uncertain weather
- Energy-efficient planning desired

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Addressing Environment Uncertainty

Naive boat

- Longer path to ride currents What if weather is worse than expected?
 - Boat regrets its plan

Strategic boat

 $\bullet\,$ Path avoids worst case

What if weather better than expected?

• Boat does not regret plan

E. Krell and L.R. Garcia Carrillo

Contributions of this Research

Robust autonomous water surface vehicle navigation

- Game theory: applied to dynamic programming motion planning for strategic planning in uncertain environments
- Dynamic programming: each iteration yields a feasible plan, with additional iterations optimizing the plan

Strategy makes use of real data

• Large marine region and online water forecasts

Outcomes

- Plan optimal paths that avoid worst-case weather
- High complexity is offset since effective plans can be generated using far fewer iterations than theoretical bound

Software Package Released for Robust Vehicle Navigation

• https://github.com/ekrell/fujin

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Resu

Game Theory Motion Planning

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Conventional Path Planning

Typically, a single path is generated from a pre-defined start

Example of paths found using Particle Swarm Optimization

Common Problem:

- if the robot gets off-course, it must generate new solution

Our Approach: Vector Field Motion Plan

Motion plan to reach goal G

- Compare: artificial potential field

Dynamic Programming

• generate optimal motion plan in a bottom-up fashion, starting from the goal

Dynamic Programming

Path via Cost Lookup

- $\bullet\,$ Each cell has cost to reach G
- Each cost depends on other, previously solved, cells
- Resulting map can generate paths

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Environment Uncertainty

Sources of uncertainty for the scenario at hand

- Obtained from model error (*w.r.t* monitoring stations)
- Learned by robot by several missions

Predicted water force

Error margin of water force

Forecast uncertainty within estimated error range

 \bullet Otherwise, weather unlimited \rightarrow predictions useless

Game Theory–inspired robust actions

Each cell's cost the solution of a 0-sum, 2-player game

- Uncertainty: weather has discrete range of actions
- The range based on the prediction's error margin
- $\bullet\,$ Higher action resolution $\rightarrow\,$ higher game complexity

Halt	INF	INF	INF	INF	INF
1	146	146	147	148	149
\downarrow	91	90	89	89	88
\leftarrow	149	148	147	147	146
\rightarrow	132	132	133	134	135

Game between 4-way robot and weather, 5 error choices

- Row-player minimizes: **blue**
- Column-player maximizes: red
- Mini-max solution: **purple**

TAMU-CC

Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Resu

Algorithms & Problem Formulation

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithm Overview: Single Iteration

Bottom-up DP: solves cells to move, starting from goal

• Cell cost: work of action at cell + all other cells to goal

Problem: each solution based on incomplete information!

• Solution: iterative dynamic programming

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithm Overview: Multiple Iterations

Each iteration's choices dependent on neighborhood

- Center: chooses high-cost since neighbors not solved
- Right: cells choose lower-cost neighbors next time
- Several iterations for lower-cost strategies to propagate

Problem Formulation: Environment

Occupancy Grid $\mathcal{R} := M \times N$ matrix where

- Value of 1 indicates occupied
- Value of 0 indicates free

 $\mathbf{J}:=$ number of force vectors affecting R

- *u* components: force grids $F^u := \{F_1^u, F_2^u, \dots, F_J^u\}$ - each component is an $M \times N$ matrix of weather force
- v components: force grids $F^v := \{F_1^v, F_2^v, \dots, F_J^v\}$
 - each component is an $M\times N$ matrix of weather force

Error Grids $E := \{E_1, E_2, \dots, E_J\}$: $M \times N$ errors of each force

• $E_i \in E$ is the error range of F_i^u and F_i^v .

 $x_{\text{goal}} := (row \in M, col \in N)$: coordinates of goal in \mathcal{R} .

E. Krell and L.R. Garcia Carrillo

Problem Formulation: Players & State Transition

Players $P := \{P_1 := \text{robot}; P_2 := \text{environment}\}$

Stages $\mathbf{K} := \{1...K\}$

Action space for P_1 : $U := \{U_1^1 \dots U_K^B\}$

- $\bullet~B\colon$ number of actions discrete heading angles, and halt
- Control action for P_1 is $u_k^b \in U$.

Action space for P_2 : $\Theta := \{\Theta_1^1 \dots \Theta_K^A\}$

- A: number of actions a tuple of selected latitudinal and longitudinal components
- Control action for P_2 is θ_k^{α}

State space X

- At each stage k, the game state is x_k
- Each state has an associated robot location

 $x_{\rm loc} := (row \in M, col \in N)$

State transition function $f_k : x_{k+1} = f_k(x_k, u_k, \theta_k^{\alpha})$

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Problem Formulation: 2-Player, Zero-Sum Games

Game $G := B \times A$

- Rows $\rightarrow P_1$ action choices
- Columns $\rightarrow P_2$ action choices

$$g_{b,a} := \begin{cases} 0 & \text{if } x_{\text{loc}} = x_{\text{goal}} \\ t_{b,a} & \text{if } R(x_{\text{loc}}) = 0 \\ D_{\text{max}} & \text{if } R(x_{\text{loc}}) = 1 \end{cases}$$

Cost of joint strategy $t_{b,a} := work_{b,a} + cost2go(f_k(x_k, u_k, \theta_k^{\alpha}))$

- $work_{b,a}$: Applied work done by P_1
- $cost2go(x_k)$: cost to go to goal after reaching state x_k .

 $actgrid(x_k)$: P₁ action after reaching state x_k

 \uparrow the motion plan itself.

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithms, Quick Look

Algorithm 1: DynamicPlanner

- Initialize cost2go values to maximum, actgrid values to NULL
- For each dynamic programming iteration I_{DP} :
 - $cost2go, actgrid \leftarrow DynamicPlannerIter(cost2go, actgrid)$
- return cost2go, actgrid

Algorithm 2: DynamicPlannerIter

- $Q \leftarrow \text{empty FIFO queue}$
- Assign $cost2go_{goal} := 0$, $actgrid_{goal} :=$ "halt"
- Add neighbors of x_{goal} to Q
- While Q is not empty:
 - $c \leftarrow \text{deque } Q$
 - Enqueue neighbors of c that have never been enqueued
 - $cost2go_c$, $actgrid_c \leftarrow NashSolver(c)$
- return cost2go, actgrid

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithms, Quick Look

Algorithm 3: NashSolver

- Init P_1 mixed policy as *B*-length 0-vector, P_2 as *A*-length 0-vector
- P_1 's selected action (row) $\leftarrow 0$, P_2 's selected action (column) $\leftarrow 0$
- For each iteration I_{nash} :

 P_1 selects counter row to minimize game value on P_2 's column

- P_2 selects counter column to minimize game value on P_1 's row
- P_1 increments mixed policy at index specified by row
- P_2 increments mixed policy at index specified by column
- P_1 action \leftarrow most frequently chosen row
- P_2 action \leftarrow most frequently chosen column
- Cost \leftarrow game value at P_1 action and P_2 action
- return cost (cost2go), P_1 action (actgrid)

Based on 2-player, 0-sum game solver code by Raymond Hettinger: code.activestate.com/recipes/496825-game-theory-payoff-matrix-solver

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithm 1: DynamicPlanner

Algorithm 1: DynamicPlanner: Motion planner

Input: x_{goal} , \mathcal{R} , D_{\max} , I_{DP} Output: cost2go, actgrid1 Set $M \leftarrow$ number of rows in R; 2 Set $N \leftarrow$ number of cols in R; 3 Initialize grid $cost2go \leftarrow M \times N$, all cells having value D_{\max} ; 4 Initialize grid $actgrid \leftarrow M \times N$ NULL matrix; /* Iteratively update cost2go, actgrid */ 5 for i in range $0 \dots I_{DP}$ do [/* Call Algorithm 2 */ 6 cost2go, actgrid \leftarrow DynamicPlannerIter(x_{goal} , cost2go, actgrid, D_{\max}); 7 return cost2go, actgrid

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithm 2: DynamicPlannerIter

	Algorithm 2: DynamicPlannerIter:				
	Assigns costs, actions to to each cell in occupancy grid ${\mathcal R}$				
	Input: x_{goal} , $cost2go$, $actgrid$, D_{max}				
	Output: cost2go, actgrid				
	<pre>/* Q: cells that need assignment</pre>	*/			
1	Initialize FIFO queue $Q \leftarrow \emptyset$;				
	/* V : remembered all added cells	*/			
2	Initialize set $V \leftarrow \emptyset$;				
3	3 Start at x _{goal} ;				
4	Set $cost2go_{goal} = 0$, $actgrid_{goal} =$ "halt";				
5	Add neighborhood grid cells to Q and to V ;				
6	6 while $Q \neq \emptyset$ do				
7	Cell $c \leftarrow$ Dequeue Q ;				
8	Add neighborhood cells to Q if c not in V ;				
9	Add neighborhood cells to V if c not in V ;				
	/* Call Algorithm 3	*/			
10	$g_{b,a}, P_1^{\text{policy}}, P_2^{\text{policy}} \leftarrow \mathbf{NashSolver}(c);$				
11	Set $cost2go(c) = g_{b,a};$				
12	$ L Set actgrid(c) = P_1^{\text{policy}}; $				
13	return cost2go, actgrid				

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Algorithm 3: NashSolver

Algorithm 3: NashSolver:

Approximate, iterative 0-sum 2-player game solver

Input: G, Inash **Output:** cost $g_{b,a}$, policies $P_1^{\text{policy}} \in U$ and $P_2^{\text{policy}} \in \Theta$ 1 $B \leftarrow$ number of rows in G; **2** $A \leftarrow$ number of columns in G; /* Record whenever action selected */ **3** Init $P_1^{\text{policy}} \leftarrow B\text{-length 0-vector};$ 4 Init $P_2^{\text{policy}} \leftarrow A\text{-length 0-vector};$ /* Init actions as first row. col */ 5 Set P_1^a , P_2^a action $\leftarrow 0$; 6 for *i* in range 0... Inash do 7 $P_1^a \leftarrow {}_b(G(b, P_2^a)), b \in B;$ 8 $P_2^a \leftarrow {}_a(G(P_1^a, a)), a \in A, ;$ /* Increment action count */ **9** $P_1^{\text{policy}}[P_1^a]1;$ 10 $P_2^{\text{policy}}[P_2^a]1;$ 11 $P_1^{\text{policy}} \leftarrow P_1^{\text{policy}} / I_{\text{nash}};$ 12 $P_2^{\text{policy}} \leftarrow P_2^{\text{policy}}/I_{\text{nash}};$ 13 return P_1^{policy} , P_2^{policy}

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Theorems

Theorem 1.- Global Optimum Convergence

After a finite number of dynamic programming iterations, the motion plan converges to a global optimum. The maximum number of executions is proportional to the region dimensions.

Large regions will be a large planning search space

Theorem 2.- Single-Iteration Feasibility

A single iteration of dynamic programming creates an unobstructed plan to the goal from any reachable cell. Each terminates in a deterministic, finite number of iterations.

Each iteration a feasible motion plan: intermediate solution

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Computational Complexity: Big-O Analysis

$$\mathcal{O}^{NASH} = \mathcal{O}((B+A) \times I_{nash})$$
$$\mathcal{O}^{DPI} = \mathcal{O}(M \times N \times \mathcal{O}^{NASH})$$

Substituting \mathcal{O}^{NASH}

$$\mathcal{O}^{DPI} = \mathcal{O}(M \times N \times ((B+A) \times I_{nash}))$$

Also

$$\mathcal{O}^{DP} = \mathcal{O}(I_{DP} \times \mathcal{O}^{DPI})$$

Substituting \mathcal{O}^{DPI}

$$\mathcal{O}^{DP} = \mathcal{O}(I_{DP} \times (M \times N \times ((B+A) \times I_{nash})))$$

Very high complexity!

• Can intermediate solutions give usable motion plans?

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Resu

Experimental Results

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Simple Region Results – Synthetic Data

Goal: green circle Start: pink diamond

 $\bullet~{\rm No~currents} \to {\rm shortest~path}$

Certain currents that oppose boat

Current direction is directly against the boat

• Boat chooses a longer path to save energy

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Simple Region Results – Synthetic Data

Certain currents that help boat

Currents directed towards goal

• Boat chooses a longer path to ride the currents

Uncertain, antagonistic currents

Antagonistic weather modifies currents to oppose boat

- Error range: bounds weather
- Ride currents when it can, shortest-path when it cannot

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Resu

Maze Region Results – Synthetic Data

Dynamic programming gives optimal maze solution

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Maze Region Results – Synthetic Data

Maze with antagonistic water currents

Currents can have a dramatic impact on best solution

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Marine Region – Real Data Results

Massachusetts Bay region

- Northeast Coastal Ocean Forecast System (NECOFS)
- Antagonistic currents

Plan Shown: 20 iterations

• Strategic planning evident

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Dynamic Programming Convergence

Real marine region

- Convergence shows very little improvement in average cost after only 20 iterations
- Feasibility of onboard planning despite high complexity

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Comparison with Particle Swarm Optimization

- PSO: 500 iterations (no uncertainty)
- DP: dynamic programming, 20 iterations (no uncertainty)
- GTDP: game theory dynamic programming, 20 iterations

Each path applied to both the certain and worst-case scenarios

Solution	Work, static forces	Work, antagonistic forces
PSO	294349	320234
DP	345085	368574
GTDP	297142	319969

Blue cells indicate the scenario used for generating that solution

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Resu

Conclusions

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Conclusions & Future Work

Conclusions

- Game theory allows robot to handle worst-case weather
- Real data suggests boat can benefit from strategic planning
- High complexity offset by ability to use early iterations
- Online forecasts such as NECOFs enable better autonomous navigation

Future Work

- Incorporate dynamic water currents
- Incorporate dynamic vehicle model
- Dynamically consider currents too strong for boat
- Extend to 3D (underwater and aerial applications)

E. Krell and L.R. Garcia Carrillo

TAMU-CC

Conclusions & Future Work

Towards a Real Robotic Boat

- Building airboat for shallow-water applications
- Modified Zelos ProBoat and EMILY ERS

E. Krell and L.R. Garcia Carrillo

TAMU-CC

End of Presentation

Game Theoretic Potential Field for Autonomous Water Surface Vehicle Navigation Using Weather Forecasts

Questions?

E. Krell and L.R. Garcia Carrillo

TAMU-CC