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Problem Description
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Scenario: Autonomous Surface Vehicles’ Navigation

Autonomous surface vehicles

Complex coastal navigation

Dynamic, uncertain weather

Energy-efficient planning desired
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Addressing Environment Uncertainty

Naive boat Strategic boat
Naive boat

Longer path to ride currents

What if weather is worse than
expected?

Boat regrets its plan

Strategic boat

Path avoids worst case

What if weather better than
expected?

Boat does not regret plan
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Contributions of this Research

Robust autonomous water surface vehicle navigation

Game theory: applied to dynamic programming motion
planning for strategic planning in uncertain environments

Dynamic programming: each iteration yields a feasible
plan, with additional iterations optimizing the plan

Strategy makes use of real data

Large marine region and online water forecasts

Outcomes

Plan optimal paths that avoid worst-case weather

High complexity is offset since effective plans can be
generated using far fewer iterations than theoretical bound

Software Package Released for Robust Vehicle Navigation

https://github.com/ekrell/fujin
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Game Theory Motion Planning
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Conventional Path Planning

Typically, a single path is generated from a pre-defined start

Example of paths found using Particle Swarm Optimization

Common Problem:
- if the robot gets off-course, it must generate new solution
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Our Approach: Vector Field Motion Plan

Motion plan to reach goal G

↓ ↓ ↙ ↙ X X ↓
↓ ↓ ↙ ↙ X X ↓
↓ ↓ ↙ ↙ X X ↓
↓ ↓ ↙ ↙ ↘ ↓ ↙
↘ ↓ X X X ↓ ↙
↘ ↘ X X X ↙ ↙
→ → → G ← ← ←
↗ ↗ ↗ ↑ ↖ ↖ ↖

Here, plan for entire region

Path from any reachable cell

Compare: artificial potential field

Dynamic Programming

generate optimal motion plan in a bottom-up fashion,
starting from the goal
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Dynamic Programming

Cost Map
4 4 4 X X X
4 3 3 X X 3
4 3 2 2 X 2
4 X 2 1 1 1
5 X X 1 G 1
4 3 2 1 1 1

Path via Cost Lookup
4 4 4 X X X
4 3 3 X X 3
4 3 2 2 X 2
4 X 2 1 1 1
5 X X 1 G 1
4 3 2 1 1 1

Each cell has cost to reach G

Each cost depends on other,
previously solved, cells

Resulting map can generate paths
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Environment Uncertainty

Sources of uncertainty for the scenario at hand

Obtained from model error (w.r.t monitoring stations)

Learned by robot by several missions

Predicted water force Error margin of water force

Forecast uncertainty within estimated error range

Otherwise, weather unlimited → predictions useless

E. Krell and L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Game Theory Game Theoretic Potential Field for Autonomous Water Surface Vehicle Navigation Using Weather Forecasts



Problem Description Game Theory Motion Planning Algorithms & Problem Formulation Experimental Results Conclusions

Game Theory–inspired robust actions

Each cell’s cost the solution of a 0-sum, 2-player game

Uncertainty: weather has discrete range of actions

The range based on the prediction’s error margin

Higher action resolution → higher game complexity

Halt INF INF INF INF INF

↑ 146 146 147 148 149

↓ 91 90 89 89 88

← 149 148 147 147 146

→ 132 132 133 134 135
Game between 4-way robot and weather, 5 error choices

Row-player minimizes: blue

Column-player maximizes: red

Mini-max solution: purple
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Algorithms & Problem Formulation
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Algorithm Overview: Single Iteration

Bottom-up DP: solves cells to move, starting from goal

Cell cost: work of action at cell + all other cells to goal

Initial map
empty cells: max cost

G

X X X
X X X
X X

Bottom-up DP
after one loop
1→ G 1←

1↗ 1↑ 1↖

X X X
X X X
X X

Bottom-up DP
completed iteration

2→ 1→ G 1← 2←

2↗ 1↗ 1↑ 1↖ 2↖

3↗ X X X 3↖

4↑ X X X 4↑

5↑ X X 5↗ 5↑

6↑ 6↖ 6↗ 6↗ 6↑

7↑ 7↖ 7↗ 7↗ 7↑

Problem: each solution based on incomplete information!

Solution: iterative dynamic programming
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Algorithm Overview: Multiple Iterations

Initial map
strong currents

G

↓ X X X
↓ X X X
↓ X X

First iteration
high costs near current

2→ 1→ G 1← 2←

2↗ 1↗ 1↑ 1↖ 2↖

10↗ X X X 3↖

18↑ X X X 4↑

26↑ X X 5↗ 5↑

27↑ 28↖ 6↗ 6↗ 6↑

28↑ 7↗ 7↗ 7↗ 7↑

Second iteration
three actions changed

2→ 1→ G 1← 2←

2↗ 1↗ 1↑ 1↖ 2↖

10↗ X X X 3↖

18↑ X X X 4↑

26↑ X X 5↗ 5↑

8↘ 7→ 6↗ 6↗ 6↑

8↗ 7↗ 7↗ 7↗ 7↑

Each iteration’s choices dependent on neighborhood

Center: chooses high-cost since neighbors not solved

Right: cells choose lower-cost neighbors next time

Several iterations for lower-cost strategies to propagate
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Problem Formulation: Environment

Occupancy Grid R := M ×N matrix where

Value of 1 indicates occupied

Value of 0 indicates free

J := number of force vectors affecting R

u components: force grids F u := {F u1 , F u2 , . . . , F uJ }
- each component is an M ×N matrix of weather force

v components: force grids F v := {F v1 , F v2 , . . . , F vJ }
- each component is an M ×N matrix of weather force

Error Grids E := {E1, E2, . . . , EJ}: M ×N errors of each force

Ei ∈ E is the error range of F ui and F vi .

xgoal := (row ∈M, col ∈ N): coordinates of goal in R.
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Problem Formulation: Players & State Transition

Players P := {P1 := robot ; P2 := environment}
Stages K := {1...K}
Action space for P1: U := {U1

1 . . . U
B
K}

B: number of actions - discrete heading angles, and halt
Control action for P1 is ubk ∈ U .

Action space for P2: Θ := {Θ1
1 . . .Θ

A
K}

A: number of actions - a tuple of selected latitudinal and
longitudinal components
Control action for P2 is θαk

State space X

At each stage k, the game state is xk
Each state has an associated robot location
xloc := (row ∈M, col ∈ N)

State transition function fk : xk+1 = fk(xk, uk, θ
α
k )
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Problem Formulation: 2-Player, Zero-Sum Games

Game G := B ×A
Rows → P1 action choices

Columns → P2 action choices

gb,a :=


0 if xloc = xgoal

tb,a ifR(xloc) = 0

Dmax ifR(xloc) = 1

Cost of joint strategy tb,a := workb,a + cost2go(fk(xk, uk, θ
α
k ))

workb,a: Applied work done by P1

cost2go(xk): cost to go to goal after reaching state xk.

actgrid(xk): P1 action after reaching state xk
↑ the motion plan itself.
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Algorithms, Quick Look

Algorithm 1: DynamicPlanner

Initialize cost2go values to maximum, actgrid values to NULL

For each dynamic programming iteration IDP :
- cost2go, actgrid ← DynamicPlannerIter(cost2go, actgrid)

return cost2go, actgrid

Algorithm 2: DynamicPlannerIter

Q← empty FIFO queue

Assign cost2gogoal := 0, actgridgoal := “halt”

Add neighbors of xgoal to Q

While Q is not empty:
- c ← deque Q
- Enqueue neighbors of c that have never been enqueued
- cost2goc, actgridc ← NashSolver(c)

return cost2go, actgrid
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Algorithms, Quick Look

Algorithm 3: NashSolver

Init P1 mixed policy as B-length 0-vector, P2 as A-length 0-vector

P1’s selected action (row) ← 0, P2’s selected action (column) ← 0

For each iteration Inash:
P1 selects counter row to minimize game value on P2’s column
P2 selects counter column to minimize game value on P1’s row
P1 increments mixed policy at index specified by row
P2 increments mixed policy at index specified by column

P1 action ← most frequently chosen row

P2 action ← most frequently chosen column

Cost ← game value at P1 action and P2 action

return cost (cost2go), P1 action (actgrid)

Based on 2-player, 0-sum game solver code by Raymond Hettinger:
code.activestate.com/recipes/496825-game-theory-payoff-matrix-solver
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Algorithm 1: DynamicPlanner

Algorithm 1: DynamicPlanner: Motion planner

Input: xgoal, R, Dmax, IDP
Output: cost2go, actgrid

1 Set M ← number of rows in R;
2 Set N ← number of cols in R;
3 Initialize grid cost2go←M ×N , all cells having value Dmax;
4 Initialize grid actgrid←M ×N NULL matrix;
/* Iteratively update cost2go, actgrid */

5 for i in range 0 . . . IDP do
/* Call Algorithm 2 */

6 cost2go, actgrid← DynamicPlannerIter(xgoal,
cost2go, actgrid, Dmax);

7 return cost2go, actgrid
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Algorithm 2: DynamicPlannerIter

Algorithm 2: DynamicPlannerIter:
Assigns costs, actions to to each cell in occupancy grid R

Input: xgoal, cost2go, actgrid, Dmax

Output: cost2go, actgrid
/* Q: cells that need assignment */

1 Initialize FIFO queue Q ← ∅;
/* V : remembered all added cells */

2 Initialize set V ← ∅;
3 Start at xgoal;
4 Set cost2gogoal = 0, actgridgoal = ”halt”;
5 Add neighborhood grid cells to Q and to V ;
6 while Q 6= ∅ do
7 Cell c ← Dequeue Q;
8 Add neighborhood cells to Q if c not in V ;
9 Add neighborhood cells to V if c not in V ;

/* Call Algorithm 3 */

10 gb,a, P
policy
1 , P policy

2 ← NashSolver(c);
11 Set cost2go(c) = gb,a;

12 Set actgrid(c) = P policy
1 ;

13 return cost2go, actgrid
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Algorithm 3: NashSolver

Algorithm 3: NashSolver:
Approximate, iterative 0-sum 2-player game solver

Input: G, Inash
Output: cost gb,a, policies P policy

1 ∈ U and P policy
2 ∈ Θ

1 B ← number of rows in G;
2 A ← number of columns in G;
/* Record whenever action selected */

3 Init P policy
1 ← B-length 0-vector;

4 Init P policy
2 ← A-length 0-vector;

/* Init actions as first row, col */

5 Set P a1 , P a2 action ← 0;
6 for i in range 0 . . . Inash do
7 P a1 ← b(G(b, P a2 )), b ∈ B ;
8 P a2 ← a(G(P a1 , a)), a ∈ A, ;

/* Increment action count */

9 P policy
1 [P a1 ]1;

10 P policy
2 [P a2 ]1;

11 P policy
1 ← P policy

1 /Inash;

12 P policy
2 ← P policy

2 /Inash;

13 return P policy
1 , P policy

2
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Theorems

Theorem 1.- Global Optimum Convergence

After a finite number of dynamic programming iterations, the
motion plan converges to a global optimum. The maximum
number of executions is proportional to the region dimensions.

Large regions will be a large planning search space

Theorem 2.- Single-Iteration Feasibility

A single iteration of dynamic programming creates an
unobstructed plan to the goal from any reachable cell. Each
terminates in a deterministic, finite number of iterations.

Each iteration a feasible motion plan: intermediate solution
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Computational Complexity: Big-O Analysis

ONASH = O((B +A)× Inash)

ODPI = O(M ×N ×ONASH)

Substituting ONASH

ODPI = O(M ×N × ((B +A)× Inash))

Also

ODP = O(IDP ×ODPI)
Substituting ODPI

ODP = O(IDP × (M ×N × ((B +A)× Inash)))

Very high complexity!

Can intermediate solutions give usable motion plans?
E. Krell and L.R. Garcia Carrillo TAMU-CC
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Experimental Results
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Simple Region Results – Synthetic Data

No water currents

Certain currents that oppose boat

Goal: green circle
Start: pink diamond

No currents → shortest path

Current direction is directly
against the boat

Boat chooses a longer path
to save energy
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Simple Region Results – Synthetic Data

Certain currents that help boat

Uncertain, antagonistic currents

Currents directed towards goal

Boat chooses a longer path
to ride the currents

Antagonistic weather modifies
currents to oppose boat

Error range: bounds weather

Ride currents when it can,
shortest-path when it cannot
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Maze Region Results – Synthetic Data

Maze with no water currents

Region Motion Plan

Dynamic programming gives optimal maze solution
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Maze Region Results – Synthetic Data

Maze with antagonistic water currents

Currents can have a dramatic impact on best solution
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Marine Region – Real Data Results

Massachusetts Bay region

Northeast Coastal Ocean
Forecast System
(NECOFS)

Antagonistic currents

Plan Shown: 20 iterations

Strategic planning evident
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Dynamic Programming Convergence
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Real marine region

Convergence shows very little improvement in average cost
after only 20 iterations
Feasibility of onboard planning despite high complexity
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Comparison with Particle Swarm Optimization

PSO: 500 iterations (no uncertainty)
DP: dynamic programming, 20 iterations (no uncertainty)
GTDP: game theory dynamic programming, 20 iterations

PSO DP GTDP

Each path applied to both the certain and worst-case scenarios

Solution Work, static forces Work, antagonistic forces

PSO 294349 320234

DP 345085 368574

GTDP 297142 319969

Blue cells indicate the scenario used for generating that solution
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Conclusions
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Conclusions & Future Work

Conclusions

Game theory allows robot to handle worst-case weather

Real data suggests boat can benefit from strategic planning

High complexity offset by ability to use early iterations

Online forecasts such as NECOFs enable better
autonomous navigation

Future Work

Incorporate dynamic water currents

Incorporate dynamic vehicle model

Dynamically consider currents too strong for boat

Extend to 3D (underwater and aerial applications)
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Conclusions & Future Work

Towards a Real Robotic Boat

Building airboat for shallow-water applications

Modified Zelos ProBoat and EMILY ERS
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End of Presentation

Game Theoretic Potential Field for Autonomous Water
Surface Vehicle Navigation Using Weather Forecasts

Questions?
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