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FogNet: 3D CNN for Coastal Fog Forecasting
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FogNet Data Cube
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2D Convolution: generate spatial-wise feature maps
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3D Convolution: generate spatial-channel-wise feature maps 
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............... ▶ 3D convolutional neural network (CNN) with attention,

dense block, & dilated convolution [1]
▶ High performance: beats NOAA’s operational
High Resolution Ensemble Forecast (HREF)

▶ Input data: spatio-temporal raster of metocean variables
▶ https://gridftp.tamucc.edu/fognet/

Physics-based channel groups

G1
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96
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68
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12

G1 wind
G2 turbulence kinetic energy & humidity
G3 lower atmosphere thermodynamic profile

G4 surface atmospheric moisture
& microphysics

G5 sea surface temperature
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EXplainable Artificial Intelligence (XAI)

Motivating Scenario
▶ Forecaster has tools & models they rely on and understand
▶ Their tools suggest no fog
▶ Researcher’s new model (performs well on test data): yes fog
▶ I suspect that the forecaster will want to know why?

→ what information is the model’s decision based on?

Post-hoc XAI methods
▶ Trained model → how do the input predictors influence model performance?
▶ Feature importance: rank predictors based on their influence on performance
▶ Feature effect: how much does each predictor contribute to a model decision

Example (Hilburn et al. [2])
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XAI: Challenges with Correlated Features

1. Input raster 

Cool 

Warm 

Hot 
2. Matches learned feature 

3. What is the influence of this
cell on performance? 4. XAI via Feature Replacement: 

single-cell change still matches feature 
--> minimal impact on performance 

5. What is the influence of
this superpixel? 6. Replacing larger region 

--> break up learned feature 
--> could change model decision 5 / 13



Proposed Approach: Comparing Influence of Feature Groups

Some feature grouping schemes

raster pixels superpixels channels channel groups channel-wise 
superpixels 

More granular groups
▶ More specific explanations
▶ Spatio-temporal autocorrelation problem

Coarser groups
▶ Potentially vague insights
▶ May join correlated values

Idea: analyze consistency among explanations to guide XAI interpretation

Apply XAI method to 
channel-wise superpixels

1 2 3

Aggregation: 
Sum superpixel importance

values in each channel

1 2 3

Apply XAI method to
each channel

Compare
explanation
consistency
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Methods: Feature Importance

▶ Global methods → how did feature influence model performance?
▶ Permutation Feature Importance (PFI): replace feature with permuted values [3]

▶ LossSHAP (LS): approximate Shapley values . . . combinatorial complexity [4]

▶ Group-hold-out (GHO): entirely remove feature & retrain model [5]

PFI (tabular example)

Image from [6]
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Methods: Feature Effect

▶ Local methods → how did feature influence specific model decision?
▶ Channel-wise PartitionSHAP (CwPS): approximate Shapley values for superpixels

within each raster channel [7]

Default PartitionShap
Initial Row split Column split

Channel-wise PartitionShap
Initial Channel split Row split

Our SHAP fork with CwPS:

github.com/conrad-blucher-institute/partitionshap-multiband-demo
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Results: Feature Importance
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Results: Feature Effect

▶ Channel-wise PartitionSHAP: computed 293 local explanations
▶ 67 hits, 64 misses, 78 false alarms and 84 random correct rejects.
▶ Hit/miss fog types: Advection (A) and Radiation, Advection-Radiation (R, A-R)
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Results: Comparing Feature Importance & Effect

▶ Feature importance: which features improve performance?
▶ Feature effect: which features are used for decisions?
▶ Group 5 has dominant effect, but less importance

→ influence both correct and incorrect outcomes

PFI performed on channels

CwPS, aggregated by channels
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Conclusions & Future Work

▶ Consistencies emerge, but explanations sensitive to feature grouping
▶ Removing a superpixel may not remove enough of the information to

change a forecast, where removing the whole channel (or group) does

▶ Strong influence from coastline, especially near KRAS (target location)
→ perhaps point-based models effective (i.e. autoencoder)?

▶ Group 5 discrepancy explained?
▶ Feature importance: moderate importance
▶ Feature effect: dominating channels
▶ But since G5 channels used also for misses & false alarms

→ expected to lower model performance

Future Work
Data-driven feature groups

1. Input raster 

Cool 

Warm 

Hot 
2. Matches learned feature 3. Cluster raster into

features
4. Feature importance of

each cluster 

But in 3D, and we have interleaved mix
of temporal (time steps) and spatial (altitudes)
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