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FogNet data structure

I FogNet: 3D CNN with attention,
dense block, and dilated convolution

I Raster: physical meteorological data

I Model demonstrates high performance
→ beats operational HREF

(High Resolution Ensemble Forecast)
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FogNet Data Cube
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2D Convolution: generate spatial-wise feature maps
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3D Convolution: generate spatial-channel-wise feature maps 
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G1 wind
G2 turbulence kinetic energy & humidity
G3 lower atmosphere thermodynamic profile
G4 surface atmospheric moisture

& microphysics
G5 sea surface temperature

3 / 20



Conventional image XAI

Image classification heatmaps

I Highlight pixel/superpixel importance

I Usually only spatial explanation

I RGB: is the color important?

I Wide variety of XAI techniques
→ no single best method

FogNet XAI (fake illustrative example!)

I An onshore & offshore region increased fog probability

I But why? Which of the >200 physical variables?

I Would like explanations of the form:
higher than average SST values &
turbulence kinetic energy at 2 meters above ground

I Goal: calculate & visualize spatio-channel-wise XAI
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Explaining arbitrary rasters

Hyperspectral imagery

I Adjacent channels may be adjacent spectrum
I XAI example: looking at the NIR band to predict crop yield
I Image: https://www.rdworldonline.com/what-is-hyperspectral-image-analysis/

Spatio-temporal rasters

I Channels are a time series
I XAI example: looking at SST pattern across three hours
I Image: Botin, Zolah T., et al. "Spatio-Temporal Complexity analysis of the Sea

Surface Temperature in the Philippines." Ocean Science 6.4 (2010): 933-947.

Raster of spatial maps

I Channel adjacency may be arbitrary
I XAI example: looking at high PM10 concentration region
I Image: Schmitz, Oliver, et al. "High resolution annual average air pollution

concentration maps for the Netherlands." Scientific data 6.1 (2019): 1-12.
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Challenge: permutation-based methods & correlation

Permutation-based XAI
I Class of XAI methods that discover feature importance by permutation

I Permutation feature importance
I Simply permute feature values to test importance
I if important → prediction changes more
I AI2ES/CIRA Short Course on XAI for Environmental Science
https://docs.google.com/document/d/
1lqpABwDl3kPe6ThE-NIDR64PimnltJEuKNkysDZuWKQ/edit

I Local Interpretable Model-agnostic Explanations (LIME)
I Perturb inputs → local approximate linear model
I Not always reliable → multiple runs may give opposite explanations
I https://christophm.github.io/interpretable-ml-book/lime.html

I SHapley Additive exPlanations (SHAP)
I Like LIME, but principled (game-theoretic fairness guarantees)
I A single optimal solution
I Struggles with correlated features
I https://christophm.github.io/interpretable-ml-book/shap.html

Challenges for rasters
1. Explaining correlated features → spatial & channel-wise autocorrelation
2. Permuted rasters unrealistic → meaningful model output?
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PartitionShap: explain grouped features

I Grouping features may help with correlation
I Permute a single pixel in bird’s bill → noise, little affect
I Remove bill superpixel → expect significant change in prediction

I Hamilton et al. → PartitionShap → SHAP on spatial superpixels

I Heatmap: regions that increase class probability (red) or decrease it (blue)
I Idea: extend to grouped channel-wise features

Paper: Hamilton, Mark, et al. "Model-Agnostic Explainability for Visual Search."
arXiv preprint arXiv:2103.00370 (2021).

Part of SHAP library: https://github.com/slundberg/shap
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PartitionShap: algorithm overview

Local explanation
I SHAP values calculated for a single prediction
I Each superpixel’s SHAP values → units away from a base values

I Base value: typically the original prediction for non-tabular
I Positive SHAP: superpixel contributed towards original prediction
I Negative SHAP: superpixel contributed away from original prediction

tabular example:

Generate partition tree

I Hierarchy of splits along rows, columns
I Reach single pixel → channel split
I Until max evaluations is reached

controls explanation granularity
& computation time
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PartitionShap: generate masks

Calculate SHAP values, starting from root

1. masks from partitions

I By comparing model output of parent and child
masks, can simulate feature removal

I Must replace superpixel with something
I SHAP values based on many such comparisons,

weighted proportionally to partition size

2. masks from combinations
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PartitionShap: apply masking method

Inpaint Telea

Inpaint NS

Blur (10x10)

Blur (100x100)

Black image

White image

I Image feature removal trickier than tabular
I Many options → which to choose?
I No option for random values?
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PartitionShap: explanation sensitivity

Inpaint Telea Gray image

Blur (10x10) Blur (100x100)
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Proposed technique: channel-wise PartitionShap

I SHAP values assigned based on hierarchical partitions
I To modify the behavior, modify partition algorithm
I Goal: SHAP values on the raster channels (bands)

Goal:

Default (spatial) partition scheme

Channel-wise partition scheme
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Rasters to XAI features

1. Single variable at a coordinate → Ideal, but challenging to compute
2. A single coordinate? → But which of the >200 variables?
3. A single variable? → Useful, hard to explain correlated bands
4. Group of features in a spatial region? → How to choose the volumes?
5. A spatial region? → Again, which of the >200 variables?
6. Group of adjacent variables? → Useful for meaningful groups
7. A single variable in a region? → Expected to be very useful

Modified diagram from https://distill.pub/2018/building-blocks/ 13 / 20
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Implementation: channel-wise PartitionShap

PartitionShap modifications
I SHAP fork: https://github.com/conrad-blucher-institute/shap

1. Partition scheme options (default & channel-wise)
masker = shap.maskers.Image("blur(3, 3)", shape, partition_scheme=1)

2. Plotting option to plot SHAP values on selected bands:
shap.image_plot(shap_values, plotchannels=[0, 1, 2], hspace=0.5)

Three model demonstrations
I Jupyter notebooks: https://github.com/conrad-blucher-institute/
partitionshap-multiband-demo

1. ImageNet (RGB) (used in PartitionShap documentation)
Used ResNet-50 with pretrained weights

2. EuroSAT (RGB) — Helber et at., 2019
Trained ResNet-50 using PyTorch & TorchSat — 100 epochs

3. EuroSAT (multispectral, 13 bands) — Helber et at., 2019
Trained ResNet-50 using PyTorch & TorchSat — 100 epochs

Manuscript in progress. For now, cite this GitHub repository if used! 14 / 20
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3D SHAP visualization

I Plotting each band → hard to visualize across-channel patterns
I FogNet has meaningfully adjacent bands → 3D SHAP regions?
I Visualize SHAP values as interactive 3D grid
I Implementation: python, using PyVista volume rendering library

ImageNet RGB EuroSAT RGB

EuroSAT 13-band EuroSAT 13-band

https://youtu.be/kNFY6ff996E
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Channel-wise PartitionShap: FogNet

I Run channel-wise PartitionShap on 2019 test instances
all 131 fog predictions, randomly selected 131 non-fog predictions

I 50000 evaluations → divides each channel into quadrants
Each instance takes ∼10 minutes

I Masking method: replacement with value 0.5 ← why? next slide. . .
All FogNet values in range [0, 1]

Interpreting the explanations
I Visual output still complex to interpret
I First, focus on important channels
I But use the quads to break up potential correlations

Order channel importance based on maximum quad value
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FogNet XAI: choice of masker

Blur 10 x 10

Blur 20 x 20

Blur 32 x 32

Value = 0.0

Value = 0.5 ← selected

Value = 1.0

I Blurring results inconsistent Value replacement very consistent
I Largest blur closer to value replacement
I Hypothesis: blurring does not sufficiently remove features

I Images: blurring removes important edge information
I Here, averages out SST, temp, etc.
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FogNet: top channels

Top 25 channels (dotted lines divide the 5 groups)

But consistent? check all top N → video: https://youtu.be/mY_gbSoXvJY
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FogNet: top channels

Ordered bands: fog & non-fog — SHAP absolute & signed

Need to go deeper
I Good to know what channels FogNet uses
I But most appear reasonable since chosen because they help predict fog
I Next: (VVEL_950m in range X, URGD_825 in range Y) is important

We can evaluate if the more specific strategy is reasonable
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Hamid Kamangir’s group-based XAI

I Three methods used to test importance of entire group

I Permutation
I Randomly shuffle values within a group

I SHAP
I KernelShap implementation → each group a feature
I SHAP methodology → combinatorial based on number of groups

I Group Hold Out
I Retrain FogNet, but with an entire group omitted

I Out of sync: Hamid using newer, better version of FogNet

Hamid’s methods → Group 3 is important. . .

Waylon Collins’ (NWS) comments
I Channels present in top channels table

→ important for predicting fog
I Group 3 included to capture vertical structure:

I Pattern across multiple channels
I But individual channels not expected important

20 / 20



PartitionShap: simplified algorithm

Simplified algorithm

1. Get model, data

2. Generate partition tree (hierarchical clustering) of image elements

3. Calculate base value: prediction = model(image)
Here, prediction = [prob class 0, prob class 1, . . .]
Instead of average, SHAP values are relative to this
Since each class has a prob, can calc SHAP values for each class

4. While not max evaluations:
4.1 Get partitions from tree, starting from root
4.2 Generate binary masks from partitions
4.3 Calculate with and without feature by simulating

with and without masking features
Multiple methods: blurring, inpainting, . . .

4.4 Weight the SHAP value by relative size of the partition
Larger partition → higher weight

5. Return SHAP values with lowest partitions reached
Technically called Owen values since the weights are not SHAP’s

I The plotted superpixels are the smallest reached within the evaluation limit
I More evaluations → more granular explanation → more computation
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Demo 1: ImageNet (RGB)

Masker: inpainting (Telea)

Masker: 10×10 blur kernel

Masker: 100×100 blur kernel

Masker: 100×100 blur kernel
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Demo 2: EuroSAT (RGB)

Masker: 10×10 blur kernel

Masker: black image

Masker: white image

Masker: 10×10 blur kernel
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Demo 3: EuroSAT (multispectral, 13 bands)

Bands
Aerosols, Blue, Green, Red, Red edge 1, Red edge 2,

Red edge 3, NIR, Red edge 4, Water vapor, Cirrus,

SWIR 1, SWIR 2

Masker: 10×10 blur kernel

All maskers → practically no SHAP

Masker: 100×100 blur kernel . . .
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