Explaining FogNet Using Channel-wise PartitionShap

Evan Krell

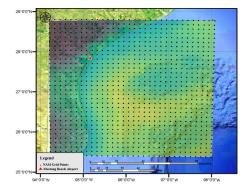
This material is based upon work supported by the National Science Foundation under award 2019758

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

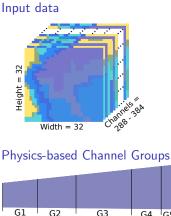
Outline

- 1. Background
 - 1.1 FogNet data structure
 - 1.2 XAI on raster data
 - 1.3 Permutation-based methods
 - 1.4 PartitionShap
- 2. Proposed technique
 - 2.1 Channel-wise PartitionShap
 - 2.2 3D visualization tool
- 3. Initial results
 - 3.1 FogNet Channel-wise PartitionShap
 - 3.2 Top channels analysis
 - 3.3 Comparison with Hamid Kamangir's group-based XAI

FogNet data structure



- FogNet: 3D CNN with attention, dense block, and dilated convolution
- Raster: physical meteorological data
- Model demonstrates high performance \rightarrow beats operational HREF (High Resolution Ensemble Forecast)

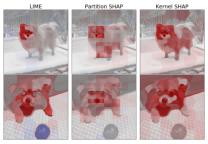


G4 G5 108 96 108 68 12 G1 wind

- G2 turbulence kinetic energy & humidity
- G3 lower atmosphere thermodynamic profile
- G4 surface atmospheric moisture & microphysics
- G5 sea surface temperature

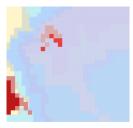
Conventional image XAI

Image classification heatmaps



- Highlight pixel/superpixel importance
- Usually only spatial explanation
- RGB: is the color important?
- ► Wide variety of XAI techniques → no single best method

FogNet XAI (fake illustrative example!)



- An onshore & offshore region increased fog probability
- But why? Which of the >200 physical variables?
- Would like explanations of the form: higher than average SST values & turbulence kinetic energy at 2 meters above ground
- Goal: calculate & visualize spatio-channel-wise XAI

Hyperspectral imagery

- Adjacent channels may be adjacent spectrum
- > XAI example: looking at the NIR band to predict crop yield
 - Image: https://www.rdworldonline.com/what-is-hyperspectral-image-analysis/

Spatio-temporal rasters

- Channels are a time series
- XAI example: looking at SST pattern across three hours
- Image: Botin, Zolah T., et al. "Spatio-Temporal Complexity analysis of the Sea Surface Temperature in the Philippines." Ocean Science 6.4 (2010): 933-947.

Raster of spatial maps

- Channel adjacency may be arbitrary
- XAI example: looking at high PM₁₀ concentration region
 - Image: Schmitz, Oliver, et al. "High resolution annual average air pollution concentration maps for the Netherlands." Scientific data 6.1 (2019): 1-12.

Permutation-based XAI

Class of XAI methods that discover feature importance by permutation

Permutation feature importance

- Simply permute feature values to test importance
- if important \rightarrow prediction changes more
- Al2ES/CIRA Short Course on XAI for Environmental Science https://docs.google.com/document/d/ 1lqpABwDl3kPe6ThE-NIDR64PimnltJEuKNkysDZuWKQ/edit

Local Interpretable Model-agnostic Explanations (LIME)

- ▶ Perturb inputs → local approximate linear model
- ▶ Not always reliable \rightarrow multiple runs may give opposite explanations
- https://christophm.github.io/interpretable-ml-book/lime.html

SHapley Additive exPlanations (SHAP)

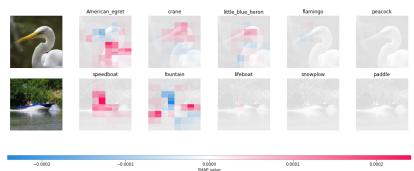
- Like LIME, but principled (game-theoretic fairness guarantees)
- A single optimal solution
- Struggles with correlated features
- https://christophm.github.io/interpretable-ml-book/shap.html

Challenges for rasters

- 1. Explaining correlated features \rightarrow spatial & channel-wise autocorrelation
- 2. Permuted rasters unrealistic \rightarrow meaningful model output?

PartitionShap: explain grouped features

- Grouping features may help with correlation
 - Permute a single pixel in bird's bill \rightarrow noise, little affect
 - $\blacktriangleright \text{ Remove bill superpixel} \rightarrow \text{expect significant change in prediction}$
- ▶ Hamilton et al. \rightarrow PartitionShap \rightarrow SHAP on spatial superpixels



- Heatmap: regions that increase class probability (red) or decrease it (blue)
- Idea: extend to grouped channel-wise features

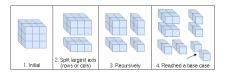
```
Paper: Hamilton, Mark, et al. "Model-Agnostic Explainability for Visual Search."
arXiv preprint arXiv:2103.00370 (2021).
```

Part of SHAP library: https://github.com/slundberg/shap

Local explanation

- SHAP values calculated for a single prediction
- ► Each superpixel's SHAP values → units away from a base values
 - Base value: typically the original prediction for non-tabular
 - Positive SHAP: superpixel contributed towards original prediction
 - Negative SHAP: superpixel contributed away from original prediction

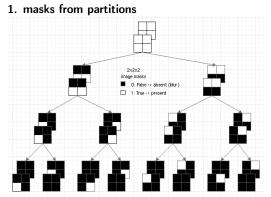
Generate partition tree



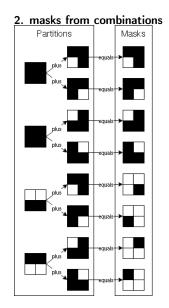
- Hierarchy of splits along rows, columns
- Reach single pixel \rightarrow channel split
- Until max evaluations is reached controls explanation granularity & computation time

PartitionShap: generate masks

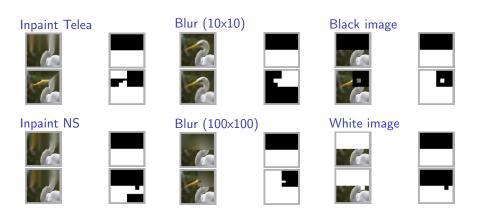
Calculate SHAP values, starting from root



- By comparing model output of parent and child masks, can simulate feature removal
- Must replace superpixel with something
- SHAP values based on many such comparisons, weighted proportionally to partition size



PartitionShap: apply masking method



- Image feature removal trickier than tabular
- ► Many options → which to choose?
- No option for random values?

PartitionShap: explanation sensitivity

Inpaint Telea

crane

little blue heron

-0.0002 -0.0001 0.0000 SHAP value

-0.00010

0.00000

SHAP value

0.000

Gray image

crane

little blue heron

-0.0003	-0.0002	-0.0001	0.0000
			SHAP value

-0.00005

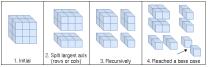
crane

0.00005

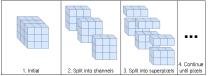
Proposed technique: channel-wise PartitionShap

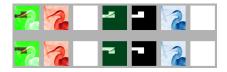
- SHAP values assigned based on hierarchical partitions
- To modify the behavior, modify partition algorithm
- Goal: SHAP values on the raster channels (bands)

Default (spatial) partition scheme

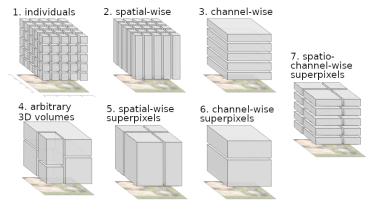


Channel-wise partition scheme





Rasters to XAI features



- 1. Single variable at a coordinate $\quad \rightarrow \quad$ Ideal, but challenging to compute
- 2. A single coordinate? \rightarrow But which of the >200 variables?
- 3. A single variable? \rightarrow Useful, hard to explain correlated bands
- 4. Group of features in a spatial region? \rightarrow How to choose the volumes?
- 5. A spatial region? \rightarrow Again, which of the >200 variables?
- 6. Group of adjacent variables? \rightarrow Useful for meaningful groups
- 7. A single variable in a region? \rightarrow Expected to be very useful

Modified diagram from https://distill.pub/2018/building-blocks/

PartitionShap modifications

- SHAP fork: https://github.com/conrad-blucher-institute/shap
 - 1. Partition scheme options (default & channel-wise)
 - masker = shap.maskers.Image("blur(3, 3)", shape, partition_scheme=1)
 - Plotting option to plot SHAP values on selected bands: shap.image_plot(shap_values, plotchannels=[0, 1, 2], hspace=0.5)

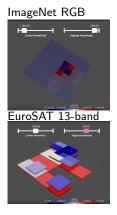
Three model demonstrations

- Jupyter notebooks: https://github.com/conrad-blucher-institute/ partitionshap-multiband-demo
- 1. ImageNet (RGB) (used in PartitionShap documentation) Used ResNet-50 with pretrained weights
- EuroSAT (RGB) Helber et at., 2019 Trained ResNet-50 using PyTorch & TorchSat — 100 epochs
- 3. **EuroSAT (multispectral, 13 bands)** Helber et at., 2019 Trained ResNet-50 using PyTorch & TorchSat — 100 epochs

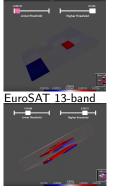
Manuscript in progress. For now, cite this GitHub repository if used!

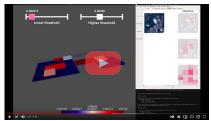
3D SHAP visualization

- Plotting each band \rightarrow hard to visualize across-channel patterns
- ▶ FogNet has meaningfully adjacent bands \rightarrow 3D SHAP regions?
- Visualize SHAP values as interactive 3D grid
- Implementation: python, using PyVista volume rendering library



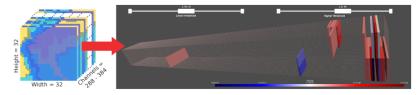
EuroSAT RGB





https://youtu.be/kNFY6ff996E

Channel-wise PartitionShap: FogNet



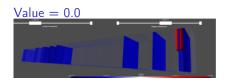
- Run channel-wise PartitionShap on 2019 test instances all 131 fog predictions, randomly selected 131 non-fog predictions
- ► 50000 evaluations → divides each channel into quadrants Each instance takes ~10 minutes

Interpreting the explanations

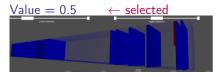
- Visual output still complex to interpret
- First, focus on important channels
- But use the quads to break up potential correlations
 Order channel importance based on maximum quad value

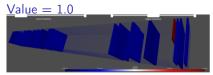
FogNet XAI: choice of masker

Blur 10 x 10



Blurring results inconsistent

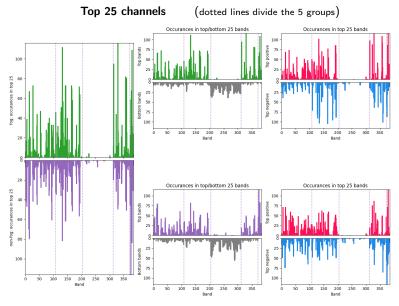




Value replacement very consistent

- Largest blur closer to value replacement
- Hypothesis: blurring does not sufficiently remove features
 - Images: blurring removes important edge information
 - Here, averages out SST, temp, etc.

FogNet: top channels



But consistent? check all top $N \rightarrow$ video: https://youtu.be/mY_gbSoXvJY

f	og_shap_fog_shap_desc	fog_shap_abs_band fog_shap_abs_desc	non-fog_shap_band non-fog_shap_desc	non-fog_shap_abs_band non-fog_shap_abs_desc
2	329 G4_VVEL_950m_t1	329 G4_VVEL_950m_t1	329 G4_VVEL_950m_t1	375 G5_TMPDP_t3
	143 G2_TKE_775m_t3	143 G2_TKE_775m_t3	143 G2_TKE_775m_t3	375 G5_TMPDP_t3
	314 G4_Q_t2	132 G2_TKE_825m_t0	165 G2_Q92_t1	12 G1_UGRD_950mb_t0
	379 G5_TMPSS_t3	379 G5_TMPSS_t3	379 G5_TMPSS_t3	167 G2_Q92_t3
	379 G5_TMPSS_t3	132 G2_TKE_825m_t0	379 G5_TMPSS_t3	375 G5_TMPDP_t3
	14 G1_UGRD_950mb_t2	314 G4_Q_t2	379 G5_TMPSS_t3	132 G2_TKE_825m_t0
	379 G5 TMPSS t3	379 G5 TMPSS t3	335 G4 VVEL 925m t3	379 G5 TMPSS t3
	379 G5 TMPSS t3	379 G5 TMPSS t3	5 G1 UGRD 10m t1	379 G5 TMPSS t3
)	54 G1 UGRD 700mb t2	379 G5 TMPSS t3	32 G1 UGRD 825m t0	376 G5 TMPSS t0
	192 G2 Q75 t0	142 G2 TKE 775m t2	5 G1 UGRD 10m t1	94 G1 VGRD 775m t2
	323 G4 VIS t3	192 G2 Q75 t0	5 G1 UGRD 10m t1	94 G1 VGRD 775m t2
	357 G4 VVEL 775m t1	85 G1 VGRD 825m t1	379 G5 TMPSS t3	377 G5 TMPSS t1
	133 G2_TKE_825m_t1	42 G1_UGRD_775m_t2	17 G1_UGRD_925mb_t1	94 G1_VGRD_775m_t2
	323 G4_VIS_t3	164 G2_Q92_t0	335 G4_VVEL_925m_t3	13 G1_UGRD_950mb_t1
	80 G1_VGRD_850m_t0	128 G2_TKE_850m_t0	46 G1_UGRD_750m_t2	128 G2_TKE_850m_t0
	93 G1_VGRD_775m_t1	127 G2_TKE_875m_t3	5 G1_UGRD_10m_t1	379 G5_TMPSS_t3
3	133 G2_TKE_825m_t1	164 G2_Q92_t0	341 G4_VVEL_875m_t1	360 G4_VVEL_750m_t0
9	323 G4_VIS_t3	134 G2_TKE_825m_t2	82 G1_VGRD_850m_t2	146 G2_TKE_750m_t2
	133 G2 TKE 825m t1	127 G2 TKE 875m t3	379 G5 TMPSS t3	360 G4 VVEL 750m t0
	382 G5_DPTSS_t2	360 G4_VVEL_750m_t0	86 G1_VGRD_825m_t2	172 G2_Q87_t0
	78 G1 VGRD 875m t2	182 G2 Q82 t2	329 G4 VVEL 950m t1	17 G1 UGRD 925mb t1
	323 G4 VIS t3	109 G2 TKE 975m t1	320 G4 VIS t0	128 G2 TKE 850m t0
4	323 G4 VIS t3	133 G2 TKE 825m t1	46 G1 UGRD 750m t2	164 G2 Q92 t0
5	102 G1 VGRD 725m t2	323 G4 VIS t3	95 G1 VGRD 775m t3	17 G1 UGRD 925mb t1

Need to go deeper

- Good to know what channels FogNet uses
- But most appear reasonable since chosen because they help predict fog
- Next: (VVEL_950m in range X, URGD_825 in range Y) is important We can evaluate if the more specific strategy is reasonable

Hamid Kamangir's group-based XAI

Three methods used to test importance of entire group

Permutation

Randomly shuffle values within a group

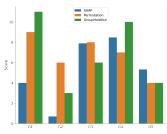
SHAP

- KernelShap implementation \rightarrow each group a feature
- SHAP methodology \rightarrow combinatorial based on number of groups

Group Hold Out

Retrain FogNet, but with an entire group omitted

Out of sync: Hamid using newer, better version of FogNet



Hamid's methods \rightarrow Group 3 is important...

Waylon Collins' (NWS) comments

- ► Channels present in *top channels* table → important for predicting fog
- Group 3 included to capture vertical structure:
 - Pattern across multiple channels
 - But individual channels not expected important

Simplified algorithm

- 1. Get model, data
- 2. Generate partition tree (hierarchical clustering) of image elements
- Calculate base value: prediction = model(image) Here, prediction = [prob class 0, prob class 1, ...] Instead of average, SHAP values are relative to this Since each class has a prob, can calc SHAP values for each class
- 4. While not max evaluations:
 - 4.1 Get partitions from tree, starting from root
 - 4.2 Generate binary masks from partitions
 - 4.3 Calculate with and without feature by simulating with and without masking features Multiple methods: blurring, inpainting, ...
 - 4.4 Weight the SHAP value by relative size of the partition Larger partition \rightarrow higher weight
- 5. Return SHAP values with lowest partitions reached Technically called *Owen values* since the weights are not SHAP's
- > The plotted superpixels are the smallest reached within the evaluation limit
- ▶ More evaluations \rightarrow more granular explanation \rightarrow more computation

Demo 1: ImageNet (RGB)

Demo 2: EuroSAT (RGB)

Masker: 10×10 blur kernel Industrial Highway

River

AnnualCrop

River

Masker: black image

SHAP value

Highway

SHAP value

Masker: white image

Masker: 10×10 blur kernel Industrial

AnnualCrop

HerbaceousVegetation

PermanentCrop

Demo 3: EuroSAT (multispectral, 13 bands)

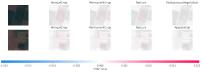
Bands

Aerosols, Blue, Green, Red, Red edge 1, Red edge 2,

Red edge 3, NIR, Red edge 4, Water vapor, Cirrus,

SWIR 1, SWIR 2

Masker: 10×10 blur kernel



All maskers \rightarrow practically no SHAP

Masker: 100×100 blur kernel

